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Abstract. The present paper concludes a research programme developed, in the past three 
years, by various authors in Several papers. The basic idea of this programme is to expiain 
the irreversible behaviour of quantum systems as a limiting case (in a sense to be made 
precise) of usual quantum dynamics. One starts with a system interacling with a reservoir 
and, in the first attempts to deal with this problem, only limits of observables of the system 
and deduced master equations were considered. In our approach we study the limits of 
quantities related to the whole compound syrtem. As a corollary we obtain an explanation 
of the physical origins of the quantum Brownian motion. In the present paper we study 

state at invene temperature p and fugacity r, through an interaction of the scattering type, 
i.e. one which preserves the total number of particles of the reservoir. We obtain a 
macroscopic equation, far the limit of the compound system, which is a quantum stochastic 
differential equation of the Poisson type, in the Frigerio and Maassen sense, whose 
coefficients are uniquely determined by the one-particle scattering operator of the original 
Hamiltonian system and whose driving noises are the Creation annihilation and number 
(or gauge) processes living in the space of a Fock quantum Brownian motion over the 
space L‘(R, dt, where KO,, is an Hilbert space depending on the inverse temperature 
p, the one-particle reservoir dynamics, the free-system dynamics and the interaction. 

:he ]ny&-si!g l imit of2  system co-p!ed q-asi.f:ee bnsnn r e j e ~ ~ o i :  1” the eq:i!ibri:m 

1. Introduction 

n., present papcr brisgr to P co!x!n.ion I !ang-!Prm invcstigI!ion devc!npcd thro??gh 
several papers. The main problem of this investigation is to understand the irreversible 
and dissipative behaviour of quantum systems. Two basic schemes have been developed 
in order to address this problem. Firstly, where the quantum noise is considered as an 
intrinsic property of a single system, arising from chaotic properties of the dynamics. 
An axiomatic approach was proposed in [I]  and investigations of particular 
Hamiltonians which exhibit chaotic behaviour have been carried out by several authors 
[2,3]. Another, more traditional approach consists in looking at a system coupled to 
another system (called, according to the interpretation, reservoir, heat bath, apparatus, 
noise, ... .) and to consider the reduced evolution of observables of the system in the 
following sense: if X is an observable of the system, by the effect of the interaction 
with the reservoir the Heisenberg evolution up to time t, leads to an observable X ( I )  
which acts on the space of the composite system, i.e. %sys,O%re.; by taking a partial 
expectation over the reservoir degrees of freedom, one obtains a new observable R( I ) ,  

t Supported in part by Ministera della Pubblica and CNR-GNAFA. 
$Supported in part by CNR-GNAFA, Bando N.211.01.24. On leave of absence from Beijing Normal 
University. 
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acting only on the space XS,,, of the system. The map f r* x( 1 )  is called the reduced 
evolution of the observable X. The equation obeyed by Z ( t )  is no longer of the 
Heisenberg type, but is usually a complicated integrodifferential equation which gives 
little insight into the dynamical behaviour of the system. To obtain additional insight 
one usually considers the reduced dynamics in some limiting, idealized, conditions 
which should show the different time scales of the system and of the reservoir: it is 
only in these limiting conditions that the basic physical differences between sysfem 
and reservoir arise. Before ihai, iiie iwo piay a perfeciiy symmeiric roie. 

The basic goal of such an idealized limiting procedure is to obtain a description 
of the limit evolution depending on the reservoir degrees of freedom only through a 
small set of physically measurable (usually macroscopic) parameters (such as tem- 
perature, dumping constants). Several limiting procedures have been investigated up 
to now. Two of the best known are the so called weak-coupling and low-density limit. 

In the WCL, the strength of the system-reservoir interaction is driven by a constant 
A and one considers limits, as A * 0, of expectation values in a vacuum or thermal 
state of time-rescaled observables of the form X,,,.. The condition A-0 means that 
one considers a weak-coupling situation; the rescaling t -  f / A 2  means that one considers 
long-time cumulative effects of the interactions. The scaling 1-  [ / A 2  has its origins in 

if U!*'denotes theSchrodingerevolution in interaction representation (cf (2.11) below); 
U: denotes the free evolution of the coupled system and cps (or cpR) is the initial state 
of the system (or reservoir), then in the WCL one studies the limit of 
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resx!ts of secon&:&: pe-+u:bginn !heo:y &e to F:ie&i& [d], More p:eese!y: 

cpp,OcpR( U!;::u:/,~(xO 1) U$>). (1.1) 

a!! thp CZSeS stfldien_ q to CQW, it has been CQnvenient tQ iCC!U& the action of the 
free Hamiltonian of the system either in the interacting Hamiltonian or in a modified 
effective Hamiltonian of the reservoir. The effect of this operation is that U: acts trivially 
on the system observables, so that the expression (1.1) is equal to 

cpPsOcpn(U(,;::(XO1)U!;:a). (1.2) 

In the LDL one also studies limits of the form 11.2) but there are the following important 
differences: 

(i) The parameter A represents fugacity, not an interaction constant. 
(ii) In (1.2) the state cp, depends on A, while the unitary U:;:.= U,,, .  depends on 

A only through the time rescaling. This is exactly opposite to the WCL case. 
The study of the limits (1.2), both in the WCL and LDL, has been the object of a 

number of investigations (e.g. c4-81) whose main result can be formulated as follows: 
in the limit A -f 0 the quantity (1.2) converges, for every observable X of the system, 
to the limit 

cpP,(P'(X)) (1.3)  

where P' is a quantum Markovian semigroup acting on the observables of the system. 
The whole influence of the reservoir on the dynamics of the system is then concentrated 
in the generator of the semigroup P'. The generator of the reduced evolution in the 
LDL case was found by Diimcke [lo] (with techniques completely different from the 
present ones and based on the BBGKY hierarchy and scattering theory). 

The trouble with this approach is that all the information on the reservoir is swept 
away and only some information on the system is retained. In several situations of 
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physical interest, however, one is also interested in retaining some information on the 
reservoir and on the coupled evolution system+reservoir. For example, if the reservoir 
is a field and the system an atom, sometimes one is interested in deducing some 
information on the atom by means of a measurement of the field. Thus, in the idealized 
description (WCL or LDL) one would like to also have a mathematical model of the 
reservoir. In  view of this, the following question arises very naturally: can we claim 
that in some sense, in the LDL or WCL, some reservoir observables converge to some limit? 

As stated the problem is very vague: Which reservoir observables are expected to 
converge? Which kind of convergence? What is the limit? 

The basic achievement of the series of papers [20-351 has been to give an answer 
to the above questions which is not only mathematically rigorous and plausible from 
the point of view of physics, but also very explicit, given in a form which provides an 
intuitive insight of the physical interactions involved as well as of all the relevant 
parameters. 

In  the above-mentioned papers, the full solution of the problem was given only in 
the WCL case, while in the LDL case, notwithstanding two important preliminary result 
(cf [36]), the problem remained open. 

In the present paper we complete the whole picture by adding the missing steps 
to the solution of the LDL problem. 

The detailed proof is very long and technically involved, therefore, in the present 
paper, we limit ourselves to outline the basic ideas and techniques involved. 

The full solution of the LDL case requires the use of all the techniques developed 
in 120-351, even those developed for solving problems which seemed to be side variants 
of the main result in the WCL case (e.g. the fermion case, the case of quadratic 
interaction,. . .). 

For this reason, in section 2, we have tried to give a qualitative description of the 
basic problem, of the physical meaning of our assumptions, and of the connection 
with our previous results. For a more detailed account of these problems we refer the 
reader to 1361. 

2. Statement of the problem 

2.1. Notation 

We recall from [36] some known facts and notation. Let Ho and H ,  be Hilbert spaces 
interpreted respectively as the system and the one-particle reservoir space. Let W( H,) 
be the Weyl C*-algebra on H I ,  i.e. the closure of the linear space spanned by the set 
(of unitaries) { W(f):  J E  H,} with commutation relations 

~ ( f )  w ( g )  =e"""*'W(g) ~ ( f )  (2.1) 
for the unique C*-norm on it (cf [37]). Let H be a self-adjoint bounded below operator 
on HI and p > 0 and p be real numbers interpreted as inverse temperature and chemical 
potential respectively. Let the fugacity z be given by z = ePr and define 

~ , : = ( l + z e - P H ) ( l - ~ e - - P H ) - ' = c o t h [ f p ( H - p ) ]  (2.2) 
and suppose that, for each z in an interval [0, Z J ,  Qz is a self-adjoint operator on a 
domain 9, independent of z. Denote 'po, the mean zero gauge-invariant quasi-free 
state on W ( H , )  with covariance operator Q,, characterized by the property 
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and let { X , ; ,  rQ:.@QJ be the GNS triple of { W ( H , ) ,  qQz}, so that 
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( @ Q ~ ,  ~ Q ; ( W ( / ) ) @ Q ~ ) = ~ Q , ( W ( ~ ) ) .  (2.3) 

We shall write W ,  for r Q z o  W. The Fock representation corresponds to the case Qz = 1,  
which corresponds to the limiting case p = 00 (or z = 0). In this case the GNS representa- 
tion will be simply denoted {X, r,@}. Let S: be a unitary group on B(H,)  (the 
one-particle free evolution of the reservoir) and suppose that 

S:Q, = QS: vt30 (2.4) 

where the equality is meant on 9. Typically we shall choose S:=exp(itH) so that 
(2.4) is obviously satisfied. This implies that the second quantization of SJ, denoted 
W ( S : )  and characterized by the condition W ( S : )  W Q z ( f )  = W Q 2 ( S : f ) ,  leaves qQ, 
invariant hence, in the GNS representation, the generator Hg’ of the one-parameter 
group W ( S : )  is called the free Hamiltonian of the reservoir in the representation rQz. 
The system Hamiltonian is a self-adjoint operator Hs on the system space H o .  The 
totalfree Hamiltonian is defined as  

HF’:= H,O 1 + 1 0  Hg’ 

where 

The interaction Hamiltonian V is 

where we use the notation 

Do:= D D,  := -D+ 

and go, g, E K c H ,  ( K  to be defined) and D is a bounded operator on Ho (we make 
this assumption for the sake of simplicity, but our techniques apply with minor 
modifications to a large class of unbounded operators, including creation, annihilation 
and number operators). 

With this notation, the total Hamiltonian is 

H‘*):= H,@I + 1 0  H ~ I +  v (2.9) 

and the wave operator at time t is defined by 

U, := exp(itHg’) exp(-itH‘”). (2.10) 

Therefore we have the formal identity 

Uo=1 
d 1 
- U , = :  V ( t ) U ,  
d t  I 

on the weakly linear span of the vectors of the form 

U @ @ Q : ( ~  s, T;f) 

(2.11) 

(2.12) 
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where U B Ho ,  f E K, S, TER.  the QQZ(A,  S, 7'; f )  are the collective coherent vectors 
defined by 

(2.13). 

and 

V(t) :=exp(ifHb'')Vexp(-itH:'). (2.14) 

It is well known that the solution of (2.11) is given by the iterated series 
m 

U,= (-i)n jo 'dt  ,... j0''-'dfHV(t,) ... V(f.) (2.15) 
"=O 

which is convergent on the domain (1.12). 
The basic example we have in mind is the free Bose gas, where 

H ,  = L2(Wd) d 3 3  H = -$A 

where A is the Laplacian on Rd. In this case one usually starts from a finite volume 
V E  W d  and the density n is the limit as the volume I VI + +m of the expectation value 
of the number operator N ,  in finite volume in the state 4:' divided by I VI. It becomes 
asymptotically proportional to the fugacity z in the limit as z+O; for example, for the 
free Bose gas in three space dimensions one has 

n = n ( P , z ) = z  exp(pk2/2-z)-'d3k 1,. 
The LDL corresponds to letting the density n in the state 'po, tend to zero, time being 
scaled as  At/ n, ri being a rescaled density to be held fixed. The asymptotic proportional- 
ity of z and n, as z +  0, implies that, choosing A = 1, the LDL is equivalent to the limit 
z+O,  time being scaled as t / z .  

The physical reason why the LDL should go with an interaction, which preserves 
the (generalized) number operator, is that scaling a parameter means that it is a 
controllable parameter and, if the interaction were not to commute with number 
operator, then the density could take any value in the course of time. 

2.2. The collective states: statement of the main resulf 

From the introduction it is clear that we are interested in the asymptotic behaviour, 
as A := &+ 0, of expectation values (or matrix elements) of quantities of the form 

u;,>(Xol) U,, , . .  (2.16) 

As a preliminary problem we investigate the asymptotic behaviour of the basic dynami- 
cal variable 

m , / * I  L, 
U,,,'= 1 (-i)" dt ,  . _ .  jo dt. V(t,)  ... V ( f , ) .  (2.17) 

"=O 0 

The reason why this is only a preliminary problem is that one can usually determine 
the asymptotic behaviour of some appropriate matrix elements of the operator (2.16) 
and, unfortunately, as several examples show (compare for example the main result 
of [28] with [29]), the limit of the product (2.16) is not obtained in the obvious way 
from the limit of (2.17). 
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However, the experience accumulated with the study of several models in the WCL 

case suggests that the most difficult step consists in controlling limit (2.17) and 
understanding the equation (usually stochastic) which it satisfies. Once this is done, 
the passage to the limit (2.16) is by no means trivial, but the difficulties are mainly of 
a technical nature. (A possible exception is the fact that, in the LDL case, the limit of 
(2.17) can be controlled for all t = R  in the Fock case, while the same limit in the 
finite-temperature case and the limit (2.16) can be controlled only for t in a certain 
small interval. It is not yet clear if this difficulty is of a fundamental nature or a 
purely technical one.) In any case, the difference between the limits of the two 
quantities (2.16) and (2.17) can be described as follows: for finite A, U,/,* satisfies 
the (time-rescaled) Schrodinger equation in interaction representation (2.1 l ) ,  while 
U ~ l , ~ ( X O  1) U,/*> satisfies the corresponding Heisenberg equation. 

The basic conceptual idea, underlying the whole series of [20-361 is that, in the 
limit A +  0, the Schrodinger equation (2.11) goes into a quantum stochastic differential 
equation, while the corresponding Heisenberg equation goes into a quantum Langevin 
equation (more precisely: the quantum Langevin equation canonically associated to 
the quantum stochastic equation satisfies by the limit of U,i,z). 

Unfortunately there is no hope that the limit (2.16) (also (2.17)) exists in any usual 
operator topology: this is well known form the WCL case (and also from the classical 
case). So the first problem to be addressed is: in which sense do we speak of the limit 
of the operator U,lAz as A + O? 

To answer this question was a difficult problem even in the WCL case. In that case 
we were able to control the limit of expressions of the form 

(2.18) lim (uO@*(L S, TI, U , 1 * 2 v @ ~ ( f ’ ,  S’, T‘))  
* - 0  

where the choice of the vectors 

(2.19) 

(called the collectiue coherent vectors) was motivated by the analogy with the quantum 
central limit theorem in [381. 

More precisely, both in the WCL and LDL Fock cases, for a variety of models, one 
has the following situation (cf. [i, 3,sj or section 4j of L36j). 

One starts from the Hilbert space Z, of a system with a given free evolution and 
a given interaction V. In terms of these, one defines a two-parameters family U!;:. of 
unitary operators of the form (2.17). Finally, one proves the following: 

Theorem 2.1. There exists 
a set T, 
a map @: (A, a)€ .T* @,(a) E E, 
a Hilbert space SC, 
a total subset @(a)(a  E T); 
a one-parameter family U ( t )  of unitary operators on X, such that the limit (2.18) 

exists and is equal to 

lim (@,(a), U $ i ~ @ ~ ( a ’ ) )  = (@(a),  U ( t ) @ ( a ’ ) ) .  (2.20) 
A-0 

In particular, for i = 0, this yields 

l im(@,(aj ,@P,(a’))=(@(a),@(a’)) .  
A-0 

(2.21) 
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Thus, denoting X A  the closed subspace spanned by the collecrive uectors QA(a), 
(2.21) gives a precise meaning to the statement: as A + 0 the space XA converges to a 
limit space X. 

As already mentioned, this scheme worked well for several models [21-23,28,291, 
but the attempt to extend this scheme to wider and wider classes of models led to the 
discovery of pathological phenomena, e.g. the limit (2.18) might exist and be of the 
form (2.20) without U ( t )  being unitary (cf [27]). 

The appearance of these pathologies led Frigerio to conjecture that the correct 
choice of the collective states should depend on the form of the interaction. 

Consider a system interacting with a reservoir, as in the scheme described at the 
beginning of this section (but not necessarily with the interaction (2.7)). One should: 

(i) Identify, for each A, a subspace XA of the state space ofthe coupled system-the 
space of collecrive vectors. 

(ii) Identify a limiting space X, characterized by the following properties: there 
exist a dense subspace 3 c X, 

for each A > 0, a dense subspace 9, c X A ,  
a one-to-one map @ A  E 9, r* @ E 9 such that, if (@A),  (@:)(A > 0) are families 
in 9A such that QA + @, @:+a', with @, @'E 9, then 

lim (@*, @;)=(a, @'). (2.22) 
A - 0  

(iii) Prove the existence of the limit 

lim ( @ A ,  U(t )@' )  
A - 0  

(2.23) 

for the basic dynamical variable, defined by (2.11) and for (@&), (@:), @, @' as in (ii) 
above. 

(iv) Deduce an equation (usually a quantum stochastic differential equation in the 
sense of Hudson and Parthasarathy [lS]) satisfied by c l ( [ ) .  

(v) Prove that U ( t )  is unitary. 
(vi) For every observable X of that system prove that, as A+O, 

( @ A ,  U , / A X 0  1 )  u:/*z@;)+ (@, U ( t ) ( X O  l)U*(i)@') 

( @ A ,  U : / A X 0  1 )  U,/A@;)+(Q, U " ( t ) ( X @  1) U(t )@? .  

(2.24) 

(2.25) 

When there is an apriori privileged state @'of the reservoir (vacuum state, thermal 

@ A  = uo@;(o)  @:= UO@o,(") U, U E Ho (2.26) 

state,. . .), the corollary of step (vi) given by the choices 

gives the reduced evolution of the system through the identity 

(U BY, U*( t)(X 0 1) U (  t )  U 0 Y') = (U, P ' ( X ) u )  (2.27) 

where Y corresponds to @a in the map of point (ii) above and P' is the Markovian 
semigroup of (1.3). 

23.  The basic assumpiions and their role 

The basic assumption, which has been common to all the investigations on the WCL 
and the LDL, concerns the one-particle reservoir and dynamics and is the following: 
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there exists a non-zero subspace K of H ,  (in all the examples it is a dense subspace) 
such that 

~ R I C f ; S : g ) l d ~ < ~  V1;gEK. (2.28) 

L Accardi and Y G Lu 

Moreover, we suppose that 

QrK E K.  (2.29) 
For example, for the free Bose gas, H, = L'(R') for some d 2 3, H = -A/& where A 
is the Laplacian on W" and K can be chosen to be L ' n  L"(3'). From lemma 3.2 of 
[21], we know that the assumption (2.28) implies that the sesquilinear form ( . l . ) :K  x 
K + C defined by 

(fig):= I (1; S:g) d f  L g e K  (2.30) 

defines a pre-scalar product on K.  We denote { K ,  (.I.)}, or simply K, the completion 
of the quotient of K by  the zero (.I.) norm elements. 

We assume, moreover, that the system Hamiltonian Hs is related to the coefficient 
D, of the interaction, by the identity 

(2.31) 

a familiar assumption, satisfies by all the Hamiltonians commonly used in quantum 
optics. For the sake of definition we shall assume that 

wj > 0 ( . i=O,1)  w , # w , .  (2.32) 

We assume moreover that the test functions go, g, which define the interaction 

(go. S k J  = 0 VrER (2.33) 

and we fix two mutually orthogonal projections Po,  P, commuting with H such that 

peg. = g, & = O , 1 .  (2.34) 

I 

e i ? H E ~  e-itH,=e-ir(o,-u ) ' D  

(2.71, have disjoini energy specira, i.e. 

T h i c  orr..m-t:nn m a l l m e  thnr  ~ . ,~ -  :F+hn -o.+:cI~. n F  rhn --ca...,-:- hn..- I n - n & r m l l . ,  
11.11 Y""Y.L.pL.".. a.. IU..l ... a,, C"...L L1 , I l l  p Y ' L L ' . L "  "1 L l l L  L C I C L  V " 1 1  .I""= ~ C L , U . L . . a . L J  

a continuous energy spectrum, they behave like a two-level system as far as their 
interaction with the system is concerned: if Po and PI project onto disjoint intervals 
(energy bands) Io and I , ,  these energy bands act as the counterpart of the energy levels 
w 0 .  w ,  of the system. 

This assumption has the following effect: when we go in interaction representation 
with the interaction (2.7) and the free Hamiltonian (2.5), we obtain 

V(f)=i  1 e"HsD, e-"HsOA+(S:g~)A(S:gl_~) 
F E W . I t  

= j 2 e-it(u,-u l-,'D, OA+(S:g , )A(S:g l_ , ) .  (2.35) 
E t ( O . l I  

Therefore if we define the group IS,; f E R] of unitary operator on HI by 

exp[ir(H -- woPo- w,P,)] (2.36) 1 -i l~ugP"iu,P,l= S, := S, e 

then 

&go:= S: e+"yogo s,g, := S:  e-""lg, (2.37) 
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and therefore 

(2.38) 

Thus we see that as far as the interaction V i s  concerned, under the assumption (2.331, 
one can assume that wo= w ,  at the cost of replacing the one-particle reservoir dynamics 
S: by the eflectiue one-particle reservoir dynamics (2.36) (which depends both on the 
frequencies wj of the system and on the interaction). The infinitesimal generator H' 
of S, is given by 

(2.39) H'= H - onPo- w ,  PI. 

2.4. Connection with scattering theory 

The connection between the stochastic process U (  1 )  and scattering theory is the second 
crucial step of our programme. It was established in [36] and here we recall the basic 
results of that paper. 

Because of number conservation for interactions of scattering type, the closed 
subspace of H0O& generated by vectors of the form uOA+(f)@ (U E Ho, f E H,), 
which is naturally isomorphic to HOB H,, is globally invariant under the time evolution 
operatorexp[i(H,Ol+ 1 0 H R +  V)t],and the restrictionofthetimeevolutionoperator 
to this subspace corresponds to an evolution operator on HoOH, given by 

exp[i(H,Ol+ 1 O H +  V l ) t ]  (2.40) 

where 

VI = i(DOlgo)(g,l-cc). (2.41) 

Diimcke's results [lo] tell us that the reduced evolution of observables in B(H,)  
is completely determined, in the LDL, by the scattering operator for the evolution (2.40) 
on H@H, and by the temperature of the reservoir. This corresponds to the physical 
intuition that particles of a dilute gas should scatter independently, one at a time, in the 
system. The relevant operators are the one-particle Mdler wave operators 

a, = s- lim exp[i(H,O 1 + 1 0 H +  Vl)t] exp[-i(H,Ol + 1 O H ) t ]  (2.42) 
,t*m 

the one-particle T-operator. 

T = V,O+ 

and the one-particle S-operator 

(2.43) 

S =Om+.  (2.44) 

Under rather general assumptions, which are satisfied in the present case, S is unitary. 
From (2.41) it follows that 

0, = s- Iirn U!')  (2.45) ,-*- 
where U!" is the solution of 

Let H,,o denote the closed subspace of H, spanned by the vectors 

s,g. & = O , 1  t € R .  (2.470) 
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Notice that U:') ,  and therefore also a,, T, S, V,, leave H,,OHl,a invariant and 
annihilate on H o @ H f , o ,  so we can restrict our attention to and in the following 
we assume that 

H,,o= H ,  . (2.476) 

Given this, the spectral subspace corresponding to a fixed real number E, in the 
spectrum of the total unperturbed one-particle energy operator H' (defined by (2.39)) 
is two-dimensional. In fact H' commutes with the self-adjoint involution I, character- 
ized by the property @-. = g,, E = 0, I and, by assumption (2.4761, the function of 
H' and J,  applied to go (or to 8,) span the whole space. Moreover an orthonormal 
basis of this space is given by the pair 
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go , , ,  gl,€ 

where g , ,  is the component of the vector g, in the Eth  energy shell. This means that, 
if we decompose the space H O B  H ,  as a direct integral over the energy spectrum of 
H ' ,  then the space of each energy shell is isomorphic to H,,0C2.  

If ZE = H0@@' is the space corresponding to the energy E, then the scalar product 
on %E is given by 

(glf)(E):= 1 exp(-iEt)(g, S,f) dt  (U@glu@f)(E):=(u, v ) ( s l f ) ( E )  (2.48) 
J R  

where 1; g E K,  so that the scalar product (glf) defined by (2.30) corresponds to the 
energy shell E = 0. 

Now, from (2.45) and (2.46) it follows that the operator S, given by (2.44), commutes 
with S, and therefore with I@H'. This implies that, in the integral decomposition of 
H , @ H ,  into energy shells, the operator S will leave the space of each shell invariant. 
So, denoting by S ( E )  the action of S on the Eth  energy shell, one has S ( E ) E  B(Haj@ 
M ( 2 ,  C) given by 

S ( E ) =  1 S , d E ) O e , , .  (2.49) 

e,,, ( E ,  E '  = 0, 1) being matrix units of M ( 2 ,  C ) .  The unitarity of S requires that (almost) 
every S ( E )  is unitary. In order to determine the form of the operators S , . , ( E )  E &Ha), 
let us introduce the following notation 

(glf)-(E):= [-mexp(-iEt)(g, S J ) d f  (2.500) 

T L E )  := (golgo)-(E)(g,lgl)-(E)DaD, (2.506) 

. ,E '=O, ,  

0 

and note that for all real E one has 

l ( g l g ) - ( E ) I ~ ~ O  -a2 l(g,S,g)l d r =  llgllf 

so that, under the assumption 

!6/1L/12maX!llg0//-, ~lgi \ l - )<l  

we have the convergent geometric series 

(2.51) 

(2.52) 
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(2.53a)  

(2 .53b)  

R,,(E):=(l-T,(E))-'Dl ( 2 . 5 3 ~ )  

R11(E):= (goIgo)-(E)DiDo(l- Ti(E))-'. (2 .53d)  

Under these assumptions and notation in [ 3 9 ]  it has been proved that the T-operator 
bas the form 

and the matrix elements of the S-operator are given by 

Sp,,(E 1 = a,,, 1 + [(ge,l &,) (E  ) l"2Rs ,r (  E I gr (2 .55)  

Given all this, the stochastic process U ( ( ) ,  deduced in the Fock case, on the 
right-hand side of (2 .21) ,  is the solution of the stochastic differential equation 

duj t )  di\i(S((j) - 1; 0) u(0) = i (2.56j 

where 

Z R,,,(O)O N , ( g , . ,  g,) := Ns(S(0)- 1 ;  0) (2.57) 

is the quantum Poisson process of zero intensity corresponding to the S-operator on 
the energy shell of total energy E = O .  The reformulation (2 .56)  (as compared with 
equation (6.1) of [ 2 8 ] )  has important consequences. The first of them is that the unitarity 
of the solution U ( t )  of (2.56),  which has been proved with heavy direct calculations 
in [28], follows from the unitarity of S(0) and a general theorem of Frigerio and 
Maassen [40]. The second is that it provides a precious heuristic indication for 
estimating what should be the full stochastic equation, i.e. involving all energy shells. 
The basic idea originated in a paper by Alicki and Frigerio [ 3 9 ]  and was fully realized 
in [36] .  It can be briefly described as follows: first one writes the Diimcke LDL generator 
in a form that naturally suggests a unitarity dilation with quantum Poisson noise in 
the sense of Frigerio and Maassen; then one actually builds such a dilation. As usual 
there is a wide arbitrarity in the construction of a specific dilation, but one can hope 
that the general structure of the stochastic equation of the dilation will be at least 
similar to the true stochastic equation satisfies by the LDL of U,,*'. 

More precisely, in [ 3 6 ]  it has been proved that the Diimcke LDL generator can be 
written in the form 

r , d = O . ,  

( X  E B ( H o ) )  and that the semigroup with generator (2 .58)  admits a unitary dilation in 
terms of a quantum Poisson process, which can be described as follows. Introduce the 
Hilbert space 

X:=  L2( ( -wO,  m), d E ) O L ' ( ( - w , ,  m), d E )  (2.59) 
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and the von Neumann subalgebra M of L"(R,dE: M(2,C)) of functions 
E - { Y e . , ( € ) :  E ' ,  E = 0, l} such that Y e . , ( € )  = 0 for E < -me, where M acts on X in 
the obvious way. Define a positive linear functional 1.1 on M by 
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where ( E  X is given by 

C ( E ) : =  ( ~ ~ ) P [ X ( - ~ ~ . ~ ) ( E )  exp( -: ( E  + W O ) )  O ~ < - ~ , . , , ( E )  exp( -7 ( E  + w , )  >I . 
(2.61) 

The function E ++ S ( E ) ,  S ( E )  given by (2.49) and (2.55), can be regarded as an 
element S of B ( H , ) O  M. With this notation, the generator (2.58) can be rewritten in 
the form of [40] as follows: 

L(X) = (id Op) [S*(XOl )S  - ( X O  l)]. (2.62) 

Then it follows from [40] that, for all X E B(H,)  and I ER', 

exp[Lt](X) = E[ U*( f ) (XOl )U( t ) ]  (2.63) 

where U(t)  is the (unitary) solution of the QSDE: 

d U ( t )  = dN,(S  - 1; 5) U(r )  U(0)  = 1.  (2.64) 

Notice that in contrast to the Fock case where only S(0) appears, here we have 
continuously many values for the total energy E, and an integration over E weighted 
by the Boltzmann factor exp[-p(E +we)]. 

In the equilibrium state at strictly positive temperatures T = I/p, particles of all 
energies are present, with numbers which become proportional to z exp[-pk2/2] in 
the limit as z+O. The total energy of a particle with momentum k and of type E 

( E  ~10 .1 ) )  is redefined to be E =fk20, ,  to take into account the energies of the energy 
levels of the system on which the reservoir particles scatter. This allows the description 
nf scittcring of 2 par!ir!c on the system by saying ?ha! a scattering particle changes 
its type from E to & ' = I - & ,  while its total energy remains unchanged: ik2-00 ,=  
zk - -oz . .  At the same time, the system performs a transition under the action of the 
operator D,.. The particle type E E {O, 1) remains a quantum degree of freedom, 
interacting with the quantum system. On the other hand, the total energy E becomes 
a classical variable (with a continuous spectrum), since the uncertainty relation 
AEA(f/z)P h involving energy and rescaled time t / z  is no longer a restriction in the 
limit as z+O. This gives rise to the peculiar structure of M as an algebra of 2 x 2  
matrices whose entries are functions of E. Each value E of total energy contributes 
to L with the Boltzmann factor exp[-pk2/2] = exp[-p(E+ue)] for an incoming 
particle of type E. 

In view of the above considerations one expects that in the general LDL case and 
with a suitable choice of collective vectors, the matrix elements of Up,z should converge, 
in the limit as z+O,  to a matrix elements of the solution U ( t )  of a QSDE of a form 
similar to (2.64). The main conceptual difficulty in order to verify this conjecture 
consists in the individuation of the collective vectors with respect to which to form 
the matrix elements. 

I r2 
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3. The choice of collective vectors 

Our starting point for the solution of the LDL problem is an analysis due to Palmer 
[12]. If we denote H i  the Conjugate’Hilbert space of H, (cf. [23]), then it is known 
that, up  to a unitary ismorphism 

and 

where 

@ Q 2  

Since 

(3.1) 

(3.4) 

(3.5) 

by expanding in z we obtain 

+ 4 z )  (3 .6)  Q+ = 1 +fz  eCPH + o ( z )  Q- = L z 1 / 2  e-BH/2 

so that, in the correspondence (3.31, 

AQs(f) = A ( f ) O  1 +;’ A(eCPHf)C3 1 + zl/’l O A + ( t  e-pH/2f) +o(z) 

and naturally 

A&(f)  = At(f)C31+- At(e-PHf)@l + zl/’lOA( t e-8H/zf)+o(z). (3.76) 

Thus, in the canonical representation (3.4), the interaction A&.(f)A,.(g) ~. takes the form 

A + ( f ) A ( g ) O l +  Z ’ / ~ ( A ’ ( ~ ) @ A + ( L  e-PH’Zg)+A(g)OA(L e-pH’y)) 

(3.7a) 
L 

Z 

2 

+: (A’(f)A(e-OHg) + A(g)A’(e-OHf)) 0 1 + o(r”/’) (3.8) 

where one recognizes: 
(i) the pureiy Fock space ierm A+(f)A(g)@i,  which is independmi o f z ;  

(ii) the z”2-terms, which are typical WCL terms; 
(iii) the z-terms, which give very simple contribution in the limit; 
(iv) the 0(z3 / ’ )  term, which (as has been proved in [ 3 1 ] )  tends to zero as z +  0. 
The fact that the term A+(f )A(g)Ol  acts only on the Fock space is qualitatively 

new with respect to the WCL case because this term corresponds to a finite interaction, 
i.e. riot vaiiishiiig for i i 0. ‘ h s e  ionjidzia:ions led iij to stttdy the ifite:aiiioii 

i (DtOAt(f)A(g)  - DOA+(g)A(f))  (3.9) 

in the Fock space as a first step towards the understanding of the full low-density 
interaction (2.7). Motivated by the analogy with the WCL we considered the same 
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collective coherent vectors as in the WCL, i.e. we study the limit as A : : = Z " ~ + O  of the 
matrix elements 
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(3.10) 

Generalizing of the techniques developed for the WCL, in [28] it was proved that the 
limit (3.10), as A + 0, exists for all t E W and satisfies a QSDE driven by a pure number 
process (cf theorem 11 of [36]). 

Later results (cf [31]) showed, however, that the natural extension of the above- 
mentioned procedure to the finite-temperature case led to a breakdown of unitarity in 
the limit evolution. 

An analogous pathological result had already appeared in the nonlinear WCL case 

Motivated by Frigerio's conjecture (the form of the collective vectors should depend 
on the interaction) we investigated in [35] the WCL of a boson model with a quadratic 
interaction. In such a case the use of nonlinear coherent vectors turned out to be too 
complicated, but another technique, developed to handie the fermion WCL case and 
based on collective number vectors [23], turned out to be applicable and we were able 
to solve the problem with the introduction of nonlinear collective number wctors defined 
in terms not of the creation operators but on their squares, e.g. 

~ 7 1 .  

T/*Z 

A is,,, A ( S J  l2 du. (3.11) 

The decomposition (3.8), together with first-order perturbation theory, suggests the 
following choice of the collective fields: 

A&(A; go, E,) := A jO"*' ds(A+(S,Q+go)OAt(LS,Q-g,)+AA(S*Q+gl)OA(rS,Q_go)) 
(3.12) 

and 

Ao,,(A; go, gt):= A ds(A'(S,Q+g,)OA'(LSsQ-g~)+A(S,Q+go)OA(LS,Q-g,)). 

(3.13) 
io'/A* 

However, a simple computation shows that, as A + 0, the two-point function 

(@F@@;, &,,(A; go, gi)A&(A; A, g:)@&@P;) (3.14) 

tends to 

Therefore, if we replace (3.12), (3.13) by the simpler expressions 

(3.15) 

(3.16) 

and its adjoint, then the corresponding two-point function tends to the same limit. 
The definition of the collective fields is suggested by (3.16) or, more generally, by 

A ~ , T ( A \ ; f o , f i )  := A jS,,. dsAt(S.~Q,fo)OAt(is~Q-fi) 
T/*Z 

(3.17) 
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and 

where fo, fi are arbitrary elements of K not necessarily satisfying condition (2.33). 

uectors by 

&,.T,O; f0.1. fi,i)Ai2,r2(A; f . 2 ,  f i . 2 )  . . . A:,,(A; f o . ~ ,  f i , ~  I@@@; 

Given this choice of the collectivefields we define the collective nonlinear number 

N 

=: n A&,rh (A ; fo. h , f i , h  )@ F@ @ >. (3.19) 

Of course the operators (3.17), (3.18) are not true creation and annihilation operators 
nor are the vectors (3.19) true number vectors. However, a simple corollary of theorem 
3.1 below, whose precise statement will not be spelled out here, implies that in the 
limit they do behave respectively as creation and annihilation operators and number 
vectors. Starting from these collective number vectors and with the same argument as 
lemma 2.2 of [35], one can prove the following theorem which shows that the collective 
number vectors, defined with the operators A*(h, fo,fJ, converge to the corresponding 
number vectors of a quantum Brownian motion. This quantum Brownian motion takes 
values in a Hilbert space KO,, (see below) which is of high physical interest because 
it  contains all the information on the microscopic model, which is preserved underpassage 
to the limit. As shown by the form (3.23), of its scalar product, the space KO,, is defined 
in a highly non-trivial way by the physics of the problem, in particular by: 

h = l  

(i) the one-particle reservoir dynamics; 
(ii) the characteristic frequencies of the system; 
(iii) the inverse temperature p ;  
(iv) the interaction (via the choice of the coherent vectors). 
Finally, notice that, even if we start from an equilibrium state at inverse temperature 

p, in the limit we obtain a Fock quantum Brownian motion and not a finite-temperature 
quantum Brownian motion (as was the case in the WCL). Also, this is physically 
reasonable because we are considering the LDL. 

The following theorem determines the quantum Brownian motion of the LDL 

corresponding to the physical characteristics (i)-(iv) listed above. Its proof follows 
from the arguments of the proof of lemma 2.2 in [35]. 

Theorem 3.1. For any E = O , I , { S ~ .  Th};=,,{S;I,  T;I)h"l,cW and 

{ f r . h ) h N = l C  K , { ~ : , ~ ) ? L I ~ K  (3.20) 

as A + 0, the limit of the scalar product 

exists and is equal to 

(3.21) 



J -m 

=I im(@&@~,A *-a lo dsA(S,Q+f)OA(LS.Q-fi) 

dfAt(S,Q+f;)OAt(LS~Q-f;)~FO~; . (3.23) 

Remark. can be rewritten as K OpK, which denotes the algebraic tensor product 
K O K  completed under the scalar product (3 .23) .  By this notation, (3.22) can be 
rewritten as 

( h = l  n A'(Xrs,.-r,iOf.hOpfi.h)v, h = l  n A+(Xis~,i;iOf;hOgf:,h)Y). 

x A ~o"*' ) 

N N'  

(3.24) 

N' 

XU@ h = l  n A S ; , , ; ( A : f b . h , f ; h ) Q ~ ~ ~ ~ )  

: = A , ( l , A ,  t ) + A , ( 2 , A ,  t ) + A , ( 3 , A ,  f ) + A , ( 4 , A ,  I ) .  

The same argument as in theorem 4.3 of [31] shows that 

A,(4,A,  1 ) + 0 .  
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A simple adaptation of the arguments of theorem 3.4 of [28], required by the fact 
that here we use the collective number vectors rather than the collective coherent 
vectors, shows that the quantity 

A , ( l , A ,  1)-  1 (U@ n A ~ ~ . r , ( . \ ; f o . h , f i . h ) ~ ~ @ ~ ~ ,  

N 

r E 10.1 1 h = l  

x [ I / '*  dt:lOA+!S:,O,_n,)A(S:,O+_p:~;)01 

X D e O @  h = l  n A ~ ~ , r ~ ( A ; f A , h , f ~ , ~ ) ~ ~ @ ~ ~ )  

J o  

N '  

then the right-hand side of (4.4) can be written, in terms of the limiting Fock space 
of theorem 3.1, as 

i.e. as  a matrix element of a stochastic integral with respect to the number process on 
that Fock space. 
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It follows from the arguments of section 4 of [35] ('cross-terms' give only zero 
contribution) and from theorem 5.2 of [35] that 

Ai(2, A, I ) =  x (U@ n A ~ ~ , r , ( A ; f o . h , f , . h ) ~ , O ~ ~ ,  A /:A* dt,  A+(S,Q+g,) 
N 

rE1o.l I h = l  

N' 
OA+(LSr3Q-gi-F)DFo@ n A ~ ~ , r ~ ( . \ ; f ~ . h . f : . h ) ~ ~ O ~ ~  

h = l  

converges to 

which is a matrix element of a stochastic integral with respect to the creation operator 
in the given Fock space. Similarly the quantity 

Ai(3, A, I ) =  1 (U@ n A : , , r ~ ( A ; f , h , f i . h ) ~ F O ~ ~ ,  [o"*' dti A(S,,Q+g,) 
N 

= e  io. I1  h = l  

N '  

OA(LS,LQ-gi-s)Di-suO h = l  n A ~ ~ , r ~ ( A ; f ~ , h , ~ ~ , h ) ~ ~ O ~ ~ )  

converges to the matrix element of a stochastic integral with respect to a number 
operator, namely 

N 
U (8 n A+(X[s,.r,]@fo,h @ p f i . h  )q, jo' dA(~[o.r,i @gs @pgi - r  

E E l O . I J  ( h = l  

(4.8) 

Notice that all the matrix elements are with respect to the same pair of number 
vectors in the Fock space of theorem 3.1. This gives an idea of how in the LDL the 
creation, annihilation and number processes arise. 

In the general case, in order to study the limit of the expressions (4.1), we consider 
the following three types of terms, since the other terms are negligible in the limit: 
pure Fock LDL, the WCL terms and the interacting terms. 

The basic idea is that the pure Fock LDL terms give rise to the number process; 
the WCL terms to the creation and annihilation processes and the interacting terms 
also to the creation and annihilation processes: this comes from the Ito product of the 
number and creation (annihilation) processes which gives the creation (annihilation) 
process. Moreover, the limits of the general terms, arising from products of terms of 
different groups, will give rise to the products of the corresponding stochastic differen- 
tials which are dealt with by the Ito table (cf [15]). More precisely, the same arguments 
as in section 4) of [31] show that one needs only to consider the following types of terms: 

) 
N' 

X D i - e U  n A+(X[~~,r~,Ofb,hOpf;,h)ly , 
h = l  

The d N  terms (pure Fock LDL) 
N ! / * 2  

U@ n A s , . r ~ ( A ; f , h . f i . h ) ~ F O ~ ~ ,  Io dti ( h = l  
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(4.11) 

The d t  terms (weak coupling-Fock LFL-weak coupling) 
N 

( h = l  
U@ n A ~ ~ . T , , ( A ; f o , h , f i . h ) ~ ~ 0 ~ ~ ,  h2 

The d A  d N  terms (weak coupling-Fock LDL) 
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The d N  dA+ terms (Fock LDL-weak coupling) 

(4.14) 

Moreover, combining the uniform estimate arguments in [27,28,31,36], we have 
the following result: 

Theorem 4.1. If the test functions go, g,  and the operator D satisfy the condition (2.51) 
then there exists a to> 0 such that for each t~ [0, to)  we can take the limit (2.23) term 
by term, where Ut is expanded in the form (2.15). 

5. The stochastic differential equation 

Having understood which terms of the iterated series contribute, in the limit, to define 
which type of stochastic integrals, the next step is to find the explicit form of the 
quantum stochastic differential equation. 

Now the situation is not the same as in the WCL. Recall that in that case, the dA 
and dA+ terms come exactly from V (  t l ) ,  while from V( t l )  . . . V (  t . ) (n  3 2) we can only 
obtain the products of dt,,dA(t,) and dA+(th) (of course corresponding to different 
time intervals dt,, dt, and d fh )  and, moreover, the d t  term comes only from V ( t J  V( t , ) .  
The present situation is similar to the situation of the LDL Fock case: for each n 1, 
from V (  t l )  . . . V (  t.)  we can get the dA, dA+ and d N  terms, and for each n = 2,4,6, . . . 
we can get a d t  term. More precisely, let us illustrate this idea with some computation 
on (4.10), (4.12), (4.13) and (4.14). 

Terms of type (4.10), i.e. the d N  terms, are controlled as in [28] (LDL Fock case). 
Bringing the product of annihilation and creation operators in (4.12) to the normally 
ordered form and by the same argument as in [35], we find that, in the limit A + 0, 
(4.12) tends to 
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Bringing the product of annihilation and creation operators in (4.13) to the normally 
ordered form, we obtain may terms, among which only one can produce a limit of the 
form of jbdA(. . .), which is 

The same arguments as [21] (or [28], [31] or [35]) imply that (5.2) tends to 

where ,y2N (or ,yXN-,) is the characteristic function on the even (or odd) natural integers 
and II,,, is a element of 

(5.4) 

(5.4) 

and 

if n is even 
if n is odd. 

E" := 
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Similarly, from (4.14) one can only obtain one term in the form of j idA+(,  , .), 
whose limit is 
I N 

Theorem 5.1. Let, in (2.23), @ A ,  rb:, denote any pair of collective nonlinear number 
vectors of the form (3.19), and @, @'the corresponding vectors in the quantum Brownian 
motion space. Then, as A+O, the limit of (2.23) exists and the operator U(r), on the 
right-hand side of ( Z Z ) ,  is rhe unique uniiary soiution of quantum stochastic aiiieren- 
tial equation 

( 5 . 1 1 )  

and the vectors lY are defined by (5.4) and (5.5). 
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Combining the techniques of [29] and the above arguments, we find 

Theorem 5.2. In the same notation as in theorem 5.1, as A-0, for each X € B ( H d ,  
the limits (2.24), (2.25) exist and the unitary operators U ( t ) ,  on the right-hand sides 
of (2.241, (2 .29 ,  are precisely those defined by theorem 5.1. 

6. Further discussion 

We now rewrite (5.8) in a form giving physical insight and establish unitarity. 

and B ( K , , , )  acts naturally on KO,, by 
First of all notice that our limiting space 

(AOpB)(f,Op J i )  = &OB BJi 

= K OD K consist of elements JoOp J,, 

VA, B E  B ( K )  

Proceeding as in [17] let us introduce the energy representation 
m 

SE := [ S, e-iE' d t  
J -m 

(6.1) 

so that SE is a linear map from K to K (more precisely, it is an operator-valued 
distribution) with the properties 

ST =SE (6.2) 
m 

S, =L 1 SE e-,'€ dE. (6.3) 
21r -m 

Denote then 

(6.4a) 

(6.46) 

Moreover 
m 

SESE.= [ S, e-''€ d t  (" S, e-"€'ds 
J -m J -m 

m m 
ds e- i r (E ' -El  - = d7 S, e-iiE -2lr8(E - E')&. (6.6) 



Applying the energy representation to (5.4) and (5.7), we obtain 

and 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 
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Now for each g E K, denote g- the orthogonal projection of g into the negative- 
energy spectral subspace of s,. Then g- is characterized by the property 

Clearly if (g. S,f) = 0, Vt  E R, i.e. i fL g have disjoint energy supports, then (g-lf)(E) = 
(flg-)(E)=O. Finally let 6: R +  KOOK denote the function 

(6.16) 
1 

5 ( E ) : =  g;opg. 
se{O.lt  (gs I&- (E ) '  

The role of the function 5 is explained by the following: 

Comparing the right-hand side of (6.19) with (6.12), (6.17a) follows. Similarly, one 
obtains (6.176, c, d) .  
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To prove (6.180) it is enough to notice that for each E in vector [(E), defined by 
(6.16), the vector has either the subscript (0.0) or (1, 1) and, by (6.8), the operator 
Tg,zn--I(~, E)  is a scalar multiple of the operator Ig,)(g,- , /SEOBSE. Therefore, the 
vector Tg2n-I(~,  E ) g ( E )  has either the subscript (0 , l )  or ( l , O ) ,  and these facts imply 
(6.17a) because go and g, have disjoint energy support. 

Using similar arguments as in the proof of (6.170) and (6.18a), one can easily get 
(6.18 b). 

Define 
m 

TdE):= 1 ( ( ~ , ~ I - . ) " ~ T ~ . ~ ~ ( E , E ) + ( D ~ D ~ - ~ ) " - ~ D ~ O T ~ , ~ ~ - ~ ( E ,  E)) 
r e { O . l t  n = l  

(6.196) 

(6 .19~)  

where the reason of the introduction of the subscript 3 is explained in section 7). One 
important property of T3, which is a consequence of (6.6), is 

Lemma 6.2. 

T,Tf=TTT,=T,tTT (6.20) 

Roof. We shall only prove T,TT = T,+ Tf and other equalities follow from the same 
arguments. 

The idea of the proof is similar to that used in theorem 7.1 (the unitarity) in [28]. 
let us introduce the notation 

Te(E):= DsDi-,(ge lg~)-(E)(g,-~lg,-~)~(E) (6.22) 

then, (6.7)-(6.10) imply that 

and 

(6.23a) 

(notice again that in general (AOaB)*fA*OpB*) .  As in [28] the crucial remark is 
that T,(E)  is a normal operator, i.e. T,(E)TT(E)= TT(E)T,(E). This implies in 
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particular that 

!p!_;) !E)( !g;) !g, !SE,O,SE.SE!.  

Applying (6.6) to the right-hand side of (6.24) one finds that 

(6.24) 

(6.25) 

Notice that the sum of the first terms (of the system part) of the right-hand side of 
( 6 2 3 ~ ~ )  and ( h 2 3 h )  is qua!  to 

This shows that the sum of the first terms on the right-hand sides of (6.23a) and (6,236) 
is equal to the sum of the first term and the fourth term in the integral of the right-hand 
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side of (6.25). The same arguments imply that the sum of the second terms on the 
right-hand sides of (6.23a) and (6.236) is equal to the sum of the second term and 
the third term in the integral of the right-hand side of (6.25) and this fact ends the 

L Accardi and Y G Lu 

proof. U 

Theorem 6.1 implies that we can write the quantum stochastic differential equation 
(5.9) in the Frigerio-Maassen form [40]. To this goal, recall that, for any pair of Hilbert 
spaces ,yo, xI ,  if N, A denote the number and annihilation processes on the Fock space 
r(,yl), then for XOc B(,yo), X I €  B ( x , ) ,  x e x , ,  Frigerio and Maassen ([40]) introduced 

(6.270) 
(6.276) 
( 6 . 2 7 ~ )  

(6.28) 

(6.29) 

where, (XOp21)E is the Hilbert space KO,K with the scalar product (.I.)€ 
((fOBg)l(f'Opg'))E := (fif')(E)(gle-BHg')(E). (6.30a) 

jRQ X ( E )  d E  IRE' [ ( E )  d E  = 5 (6.306) 

and keeping into account the fact that (6.20) is equivalent to the statement that T3 has 
the form 

T,=S-1 (6.31) 

In this space we consider the operator X and the vector 5, defined by 

where S: %+ % is a unitary operator, (6.28) becomes 

U ( t )  = 1 + (dN,(S- l)+dA:((S-l)[)+dA,((S- I)*[)+(& ( S -  1)t) ds)U(s) 

(6.32) 
which is exactly of the Frigerio-Maassen type. As a corollary of this fact we obtain: 

Theorem 6.3. The solution of QSDE (6.32) (and thus (5.9)) is unitary. 

Proof: This follows from theorem 3.4 of [40]. 

Remark. Notice that formally one has 
T T ( E ) T 3 ( E )  = TAE)TT(E)= T ? ( E ) +  TdE) V E E R  (6.33) 

which means that the unitarity condition holds on every energy shell. Unfortunately, 
(6.33) involves products of the form T f ( E ) T , ( E )  and T , ( E ) T f ( E ) ,  which make no 
rigorous sense because of (6.6). 

Id 
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7. Connection with scattering theory 

The last step of our programme is to show that the operator S in (6.32) is simply 
related (although diflerent) to the scattering operator described in section 2) and 
introduced in [391 and [361. To this goal notice that our limiting reservoir space is 
KO., and the system space is the same as the original system space. The elements of 
HOOK,,, =: I can be written as 

U Q f Q p g  

(uOf@pg,  U ’ O f  ‘Opg’) := (U, u’)(fOpg I f ’Opg’) 

U E HO, (f, 9 )  E KO,, 
with the scalar product 

(7.1) 

where (., .) is the scalar product in Ho and (.I.) is given by (3.23). 
For any operators DE B(H,);  X :  X 2 )  E B ! K ) ,  the action of the D @ X , @ , X ,  on 

X i s  the following: 

D O X , 0 g X 2 (  uO f 0,g)  := D u O ( X , O p X 2 ) ( f O P g )  = D u O X , f O p X , g .  (7.2) 

With this notation, if we denote the triples operator as (DOX,)@,,X, ,  then the QSDE 

(6.28) can be rewritten as 
,-l ,-CO 

u(t) = If J, J_  dE(dN, ( (T (E)OpSE) )+dA: ( (T (E)OpSE)5 (E) )  
m 

+dA,((T(E)OpSE)*t(E)) + ( 5 ( E ) ,  ( T ( E ) O ~ S E ) C ( E ) )  ds) U ( S ) .  (7.3) 
The meaning of (7.3) is simple: (6.28) is the equation for U in terms of the operators 

T,(E)  which act on triples (this is the reason for the subscript 3). In (7.3) this action 
is separated into the action of T ( E )  on the space ofpair H O O K  and the action of SE 
on the single space K .  We claim that the operator 

m 

T = I-, d E  T(  E) (7.4) 

is exactly the operator T defined by (2.43) (see also lemma 5.1 of [36]). This is simply 
checked by comparing the expansion (6.24) of i36j with (6 . i4a) .  (6.7) ana (6.8). 
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